Extremal anti-forcing numbers of perfect matchings of graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-forcing numbers of perfect matchings of graphs

We define the anti-forcing number of a perfect matching M of a graph G as the minimal number of edges of Gwhose deletion results in a subgraph with a unique perfect matching M , denoted by af (G,M). The anti-forcing number of a graph proposed by Vukičević and Trinajstić in Kekulé structures of molecular graphs is in fact the minimum anti-forcing number of perfect matchings. For plane bipartite ...

متن کامل

Graphs with Extremal Connected Forcing Numbers

Zero forcing is an iterative graph coloring process where at each discrete time step, a colored vertex with a single uncolored neighbor forces that neighbor to become colored. The zero forcing number of a graph is the cardinality of the smallest set of initially colored vertices which forces the entire graph to eventually become colored. Connected forcing is a variant of zero forcing in which t...

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Extremal Graphs With a Given Number of Perfect Matchings

Let f(n, p) denote the maximum number of edges in a graph having n vertices and exactly p perfect matchings. For fixed p, Dudek and Schmitt showed that f(n, p) = n2/4 + cp for some constant cp when n is at least some constant np. For p ≤ 6, they also determined cp and np. For fixed p, we show that the extremal graphs for all n are determined by those with O( √ p) vertices. As a corollary, a com...

متن کامل

Anti-forcing number of some specific graphs

Let $G=(V,E)$ be a simple connected graph. A perfect matching (or Kekul'e structure in chemical literature) of $G$ is a set of disjoint edges which covers all vertices of $G$. The anti-forcing number of $G$ is the smallest number of edges such that the remaining graph obtained by deleting these edges has a unique perfect matching and is denoted by $af(G)$. In this paper we consider some specifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2017

ISSN: 0166-218X

DOI: 10.1016/j.dam.2017.02.024